Lesson Plan for Course: B.Sc (G) Sem-I Code: MA-1 Marks: 100 Credit: 5

- Course Name: Algebra
- Course coordinator: Dr. Pintu Debnath
- Course Outcomes:

CO-1. Learn ε and δ definition of limit and continuity of a real-valued function.
CO-2. Apply Leibnitz's theorem to derive successive differentiation.
CO-3. Concept of Euler's theorem on homogeneous function.
CO-4. Able to find out tangents, normals, curvature, asymptotes, singular points of any curves.
CO-5. Understand Rolle's theorem and Mean Value theorems and their applications.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Aug	Unit-1: Relation between roots and coefficients, Transformation of equation, Equation of squared differences of a cubic, Descartes' rule of signs, Upper bounds for the real roots; Cardan's solution of the cubic and the nature of the roots of the cubic, Ferrari's methods of solution of biquadratic equations.	BS	07	$\begin{aligned} & \text { Theoretical - } 06 \\ & \text { Tutorial - } 01 \end{aligned}$
	Unit-1: De-Moivre's theorem for integer and rational indices and their applications, The n-th roots of unity. Definitions of exponential and trigonometrical functions of a complex variable, Logarithm of a complex number and its properties.	SM	05	$\begin{aligned} & \text { Theoretical - } 04 \\ & \text { Tutorial - } 01 \end{aligned}$
	Unit-1: The inequality involving $\mathrm{AM} \geq$ $\mathrm{GM} \geq \mathrm{HM}$, Extreme values of sum and product, theorem of weighted means, Cauchy's inequalities, m-th power theorem. Unit-2: Equivalence relations and partitions, Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Permutations, inversions, cycles and transpositions.	PD	04	$\begin{gathered} \text { Theoretical - } 03 \\ \text { Tutorial - } 01 \end{gathered}$
Sept	Unit-1: Reciprocal equations, Binomial equations and their properties.	BS	03	$\begin{aligned} & \text { Theoretical - } 02 \\ & \text { Tutorial - } 01 \end{aligned}$
	Unit-1: Definitions of a^{z}, Inverse circular functions, hyperbolic functions.	SM	02	$\begin{aligned} & \text { Theoretical - } 01 \\ & \text { Tutorial - } 01 \end{aligned}$
	Unit-2: Definition and examples of groups, examples of abelian and nonabelian groups, the group Zn of integers under addition modulo n and the group $\mathrm{U}(\mathrm{n})$ of units under multiplication modulo n , groups of symmetries of an equilateral triangle, the permutation group S3, the general linear group $G L(n, R), n \leq 3$.	PD	04	$\begin{aligned} & \text { Theoretical - } 02 \\ & \text { Tutorial - } 02 \end{aligned}$

Semester: I (G) Department of Mathematics, Basirhat College, Session: Aug-Dec, 2023

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Oct} \& \multicolumn{4}{|c|}{1st Internal Assessment}

\hline \& Unit-3: Matrix of real and complex numbers, Algebra of matrices (structure only); symmetric and skew symmetric matrices, Hermitian and skew Hermitian matrices; Orthogonal and Unitary matrices. Determinants, Laplace expansions, cofactors, adjoint, inverse of a matrix, Cramer`s Rule. \& BS \& 05 \& Theoretical -05
Tutorial -00

\hline \& Unit-3: Vector space, Linearly dependent and independent set, Basis, Dimension, Linear Transformation and their elementary properties and examples. \& SM \& 03 \& $$
\begin{gathered}
\text { Theoretical - } 02 \\
\text { Tutorial - } 01
\end{gathered}
$$

\hline \& Unit-2: Subgroups, cyclic subgroups, the concept of a subgroup generated by a subset, Cosets, Index of subgroup, Lagrange's theorem and its converse, order of an element, Normal subgroups: their definition, examples, and characterizations. \& PD \& 03 \& $$
\begin{gathered}
\text { Theoretical - } 02 \\
\text { Tutorial - } 01
\end{gathered}
$$

\hline \multirow[t]{3}{*}{Nov} \& Unit-3: Eigenvalues, Eigenvectors, Eigenspace, Diagonalization of matrices. \& BS \& 03 \& | Theoretical - 02 |
| :--- |
| Tutorial - 01 |

\hline \& Unit-3: Matrix representation of Linear Transformation, Rank of a matrix; Determination of rank (relevant results are to be stated only). \& SM \& 03 \& $$
\begin{gathered}
\text { Theoretical - } 02 \\
\text { Tutorial - } 01
\end{gathered}
$$

\hline \& Unit-2: Definition and examples of rings, examples of commutative and noncommutative rings, Z_{n}, the ring of integers modulo n, polynomial rings. \& PD \& 03 \& $$
\begin{gathered}
\text { Theoretical - } 02 \\
\text { Tutorial - } 01
\end{gathered}
$$

\hline \multirow[t]{5}{*}{Dec} \& Unit-3: Characteristic polynomial of a matrix, Cayley-Hamilton theorem and its application for determining inverse of square matrix. Bilinear forms, real quadratic forms Sylvester's law of inertia, positive definiteness. \& BS \& 05 \& $$
\begin{gathered}
\text { Theoretical - } 04 \\
\text { Tutorial - } 01
\end{gathered}
$$

\hline \& Unit-3: System of linear equations in matrix form $A X=B$; Consistency and inconsistency (by rank method); Types and determination of solution (by using notion of rank), Solving linear systems using Gaussian elimination. \& SM \& 04 \& $$
\begin{gathered}
\text { Theoretical - } 02 \\
\text { Tutorial - } 02
\end{gathered}
$$

\hline \& Unit-2: Definitions of Subrings, Integral domains, skew-fields, fields and subfields, their examples and elementary properties. \& PD \& 03 \& $$
\begin{gathered}
\text { Theoretical - } 03 \\
\text { Tutorial - } 00
\end{gathered}
$$

\hline \& \multicolumn{4}{|c|}{$2^{\text {nd }}$ Internal Assessment}

\hline \& Revision \& $$
\begin{gathered}
\mathrm{BS} \\
\mathrm{SM} \\
\mathrm{PD} \\
\hline
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 02 \\
& 01 \\
& 01
\end{aligned}
$$
\] \& Theoretical - 04

Tutorial -00

\hline \& \multicolumn{4}{|c|}{End Semester Examination}

\hline \& Assessment: Internal Assessment \& Assignment \& \& Total: 61 Hrs \& | Theoretical - 46 |
| :--- |
| Tutorial - 15 |

\hline
\end{tabular}

Books:

> Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser, 2006.
> Dickson, Leonard Eugene (2009), First Course in the Theory of Equations, John Wiley \& Sons, Inc. The Project Gutenberg eBook: http://www.gutenberg.org/ebooks/29785 3
$>$ W.S. Burnstine and A.W. Panton, Theory of equations, Vol. 1. Fourteenth Edition, S. Chand and Co Ltd, New Delhi.
> S. Barnard and J.M. Child, Higher Algebra, Surjeet Pbl., New Delhi, 1990.
> Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, 3rd Ed., Pearson Education (Singapore) P. Ltd., Indian Reprint, 2005.
$>$ Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., 1999.
> John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.
> David C. Lay, Linear Algebra and its Applications, 3rd Ed., Pearson Education Asia, Indian Reprint, 2007.
> K.B. Dutta, Matrix and linear algebra.
$>$ K. Hoffman, R. Kunze, Linear algebra.
> S. K. MAPA, Classical Algebra, Sarat Book Distributor,India, 2019.
$>$ S. K. MAPA, Higher Algebra, Sarat Book Distributor,India, 2019.
> H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc., 2002.

